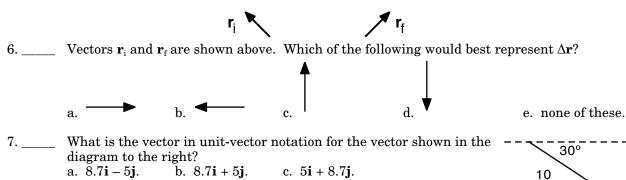

Equations and Constants: $\bar{v} = \frac{\Delta x}{\Delta t}$ $v = \frac{dx}{dt}$ $\bar{a} = \frac{\Delta v}{\Delta t}$ $a = \frac{dv}{dt}$ $\bar{v} = \frac{1}{2}(v_i + v_f)$ $|g| = 10 \text{ m/s}^2$ $x = \frac{1}{2}at^2 + v_it + x_i$ $v = at + v_i$ $v_f^2 = v_i^2 + 2a\Delta x$ $a_c = \frac{v^2}{r}$


Multiple Choice: Choose the letter of the best answer. 3 points each.

1. _____ Three vectors are shown in the diagram above. Which of the following expressions would match the diagram? a. $\mathbf{A} + \mathbf{B} = \mathbf{C}$. b. $\mathbf{A} + \mathbf{C} = \mathbf{B}$. c. $\mathbf{C} + \mathbf{B} = \mathbf{A}$. d. $\mathbf{B} - \mathbf{A} = \mathbf{C}$. e. $\mathbf{C} - \mathbf{B} = \mathbf{A}$.

$$\vec{A} = 5\hat{i} - 3\hat{j} + 4\hat{k}$$
 $\vec{B} = -4\hat{i} - 2\hat{j} + 3\hat{k}$ $\vec{C} = 4\hat{i} + 5\hat{j} - 3\hat{k}$

- 2. ____ What is **B A**? a. $-9\hat{i} + \hat{j} - \hat{k}$ b. $-9\hat{i} - 5\hat{j} + 7\hat{k}$ c. $-\hat{i} - 5\hat{j} + 7\hat{k}$ d. $\hat{i} + \hat{j} - \hat{k}$
- 3. _____Which two vectors have the same magnitude?a. A & B.b. A & C.c. B & C.d. none, they are all different.
- 4. _____ The initial velocity of an object is $2\mathbf{i} + 3\mathbf{j}$ m/s. It undergoes a constant acceleration of $-\mathbf{i} + 2\mathbf{j}$ m/s² for 4 seconds. What is its final velocity? a. $\mathbf{i} + 5\mathbf{j}$ m/s b. $3\mathbf{i} + \mathbf{j}$ m/s c. $7\mathbf{i} + 14\mathbf{j}$ m/s d. $-6\mathbf{i} - 5\mathbf{j}$ m/s e. $-2\mathbf{i} + 11\mathbf{j}$ m/s
- 5. _____ If a moving object has an acceleration that is always perpendicular to its velocity, what must be happening?
 - a. It must always be slowing down.
 - b. It must have a constant speed.
 - c. Its path must be a parabola.
 - d. It must slow down, stop and then speed up in the opposite direction.
 - e. What? It is clearly impossible for this situation to exist.

d. 1.5i - 9.9j. e. 1.5i - 9.9j.

NAME:

Questions 8 to 10 refer to the following: Charlie is riding a Ferris Wheel of radius 7 meters. He is moving with a constant speed of 3 m/s. What is the magnitude of his acceleration when he is at his lowest point? a. 16.3 m/s^2 . b. 1.3 m/s^2 . c. 0.8 m/s^2 . e. 6.3 m/s^2 . d. 8.7 m/s^2 . When he is at the lowest point on the ride, which of the following vectors best represent his 9. acceleration? d. 🚺 e. none of these. b. ิล. 10. _____ With how many "rpm"s is he rotating? a. 0.068 rpm. b. 4.09 rpm. c. 14.7 rpm. d. 43.9 rpm. e. 180 rpm. Questions 11 to 13 refer to the following: 100 m A river is 100 m wide and has a current that is flowing at 6 m/s. A duck has a water speed of 8 m/s. What would be the minimum time the duck needs to cross the river? 11. ____ b. 12.5 s. c. 10.0 s. a. 16.7 s. d. 7.14 s. What would be the fastest possible speed of the duck with respect to the 12. ____ ground? a. 5.3 m/s. b. 8 m/s. c. 10 m/s. d. 14 m/s. If the duck had a water velocity directed due west, what would be the 13. ____ velocity of the duck with respect to the ground? 6 m/s a. -8i - 6j m/s. b. 8i + 6j m/s. c. 8i - 10j m/s. d. -10i - 8j m/s. Which of the following would best represent the acceleration of an object traveling in a 14. ____ circle with a constant speed as a function of the radius of the circle it was moving in? d. a. b. С

Problem Solving: Show all work. 10 points each.

15. The position in meters as a function of time in seconds for an object is given by $\vec{r} = (-t^3 + t^2 + 5)\hat{i} + (-5t^2 + 15t)\hat{j}$

What is the average velocity of the object for the first 4 seconds?

NAME:

17. A plane is flying with an airpseed of 75 km/h. The pilot wants to go straight to an airport that is 300 km SE of her current position. Ground Control reports that there is a constant wind velocity of 25 km/h E. She orients the plane in such a way that she flies directly to the airport. How long will it take her to reach the airport?

18. The earth has a radius of 6400 km. How long would one day be if the earth rotated so fast that the centripetal acceleration of someone standing on the equator was equal to 9.8 m/s²? (Also, in this situation, what would be the centripetal acceleration for someone at the North Pole?)